CS-GY 6763/CS-UY 3943: Lecture 1
Course introduction, concentration of random
variable, applications

Prof. Ainesh Bakshi
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Goal: Learning how to learn and think critically

In the age of Al, access to information is cheap. Understanding
remains hard.

Material: Understanding the mathematics behind large Machine
Learning systems and Data Science
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Algorithms in the Age of Al

Algorithmic Machine Learning and Data Science

Statistics, machine learning, and data science study how to
use data to make better decisions or discoveries.

In this class, we study how to do so as quickly as possible,
or with limited computational resources.



Applications by the Numbers

Modern computational systems operate at massive scale:

e ChatGPT processes 1 billion queries per day, at at a cost of
$700,000+ per day for OpenAl.

e Google receives ~ 20,000 Maps queries every second.
e NASA collects 6.4 TB of satallite images every day.

e Rubin Observatory in Chile will collect 20 TB of images
every night.

e MIT /Harvard Broad Institute sequences 24 TB of genetic
data every day.



Role of Algorithms

Growing demands of data science and machine learning have
ushered in a new “golden age” for algorithms research.

e Slowing raw performance increases in CPUs + GPUs.

e Parallelization limited by financial and environmental costs.
Currently, data centers account for 5% of US electricity use.
Expected to double in next 3 years.



Role of Algorithms

Growing demands of data science and machine learning have
ushered in a new “golden age” for algorithms research.

e Slowing raw performance increases in CPUs + GPUs.

e Parallelization limited by financial and environmental costs.
Currently, data centers account for 5% of US electricity use.
Expected to double in next 3 years.

Typical data applications require combining a diverse set of
algorithmic tools. Most are not heavily covered in your traditional
algorithms curriculum.
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Class Topics

(1) Randomized methods.
(2) Optimization.
(3) Spectral methods (linear algebra) and Fourier methods.

Focus is on teaching tools to design algorithms, not just the
algorithms themselves.



Randomized Methods

Section 1: Randomized Algorithms.

It is hard to find an algorithms paper in 2026 that does not use
randomness in some way, but this wasn’t always the case!

e Probability tools and concentration of random variables (Markovs,
Chebyshev, Chernoff/Bernstein inequalities).

e Random hashing for fast data search, load balancing, faster
language models, and more. Locality sensitive hashing, MinHash,
SimHash, etc.

e Sketching and streaming algorithms for compressing and processing
data on the fly.

e High-dimensional geometry and the Johnson-Lindenstrauss lemma
for compressing high dimensional vectors.



Continuous Optimization

Section 2: Optimization.
Optimization has become the algorithmic workhorse of modern
machine learning.

e Gradient descent, stochastic gradient descent, coordinate descent,

and how to analyze these methods.

e Acceleration, conditioning, preconditioning, adaptive gradient
methods.

e Constrained optimization, linear programming. Ellipsoid and interior
point methods.

e Discrete optimization, relaxation, submodularity and greedy
methods.



Spectral Methods

Section 3: Spectral methods and linear algebra.

“Complex math operations (machine learning, clustering, trend
detection) [are] mostly specified as linear algebra on array data” —
Michael Stonebraker, Turing Award Winner

e Efficient algorithms for singular value decomposition and
eigendecomposition, including randomized methods.

e Spectral graph theory: i.e. how to use linear algebara to
understanding large graphs through linear algebra (social networks,
interaction graphs, etc.).

e Spectral clustering and non-linear dimensionality reduction.
e Compressed sensing, sparse recovery, and their applications.

e Fast Fourier Transform inspired methods in linear algebra and
dimensionality reduction.



What We Won'’t Cover

Software tools or frameworks. Spark, Torch, Tensorflow, HPC,
AWS, etc. If you are interested, CS-GY 6513 might be a good

course.

Machine Learning Models + Techniques. Neural nets,
genertive models, reinforcement learning, Bayesian methods,
unsupervised learning, etc. | assume you have already had a course
in ML and the focus of this class is on computational
considerations.

But if your research is in machine learning, | think you will find the
theoretical tools we learn are more broadly applicable than in
designing faster algorithms.

10



Our Approach

This is primarily a theory course.
e Emphasis on proofs of correctness, bounding asymptotic runtimes,
convergence analysis, etc. Why?
e Learn how to model complex problems in simple ways.

e Learn general mathematical tools that can be applied in a wide
variety of problems (in your research, in industry, etc.)

e The homework requires creative problem solving and thinking
beyond what was covered in class. You will not be able to solve
many problems on your first try!

You will need a good background in probability and linear algebra. See
the syllabus for more details. Ask me is you are still unsure.

11



Course Structure and Logistics

All of this information is on the course webpage
https://www.aineshbakshi.com/am1ds2025/ and in the
syllabus posted there! Please take a look.

Class structure:

Lecture once a week.
Office hours with TAs once a week.

Office hours with me by appointment.

Problem solving recitations once a week.
Tech tools:

e Website for up-to-date info, lecture notes, readings.
e Gradescope for turning in assignments. Sign up using course

code.
12


https://www.aineshbakshi.com/amlds2025/

Course Structure and Logistics

Class work:

e 4 problem sets (40% of course grade).

e These are challenging, and the most effective way to
learn the material. | recommend you start early, work
with others, ask questions on Ed, etc.

e You must write-up solutions on your own.

e Midterm (Mar. 13th) 25% of course grade.

13



Course Structure and Logistics

Final project or Final exam (25% of grade):

e Final exam will be similar to midterm and problem sets.

e Final project can be based on a recent algorithms paper, and
can be either an experimental or theoretical project. Must
work in a group of 2 or 3.

e We will hold a reading group outside of class for those who
decide to complete a final project to workshop topics and
papers.

e Others can join as well — it's a great opportunity to get better

at reading and presenting papers.

14



Course Structure and Logistics

Class participation (10% of grade):

e My goal is to know you all individually by the end of this
course.

e Lots of ways to earn the full grade: participation in lecture or
office hours. Participation in the reading group. Effort on the

project.
Important note:

e This is a mixed undergraduate/graduate course.
e Workload is the same, but undergraduates are graded on a

different “curve”.

ii5)



Homework Grading Policy

Grading: For each problem you solve completely, clearly indicate it is a
complete solution. After submission, you will be asked to explain one
randomly selected problem from among your completely solved problems
on a whiteboard (Signup sheet for a 10 minute slot each).

e You can use your solution notes as a reference.

e The grade you receive on the explanation will be applied to all of
your completely solved problems.

e For problems you do not solve completely, you may write “l don’t
know" to receive 25% credit.

e Problems that are incomplete without writing “l don’t know"
receive 0% credit.

e There is no partial credit for incomplete solutions.

16



Homework Grading Policy: Example

Example: If a problem set has 5 problems and you completely solve 3 of
them, one of those 3 will be randomly selected for you to explain.

If you receive 90% on your explanation, you receive 90% on all 3
completely solved problems.

For the remaining 2 problems, you can write “l don't know” on each to
receive 25% credit, or 0% if you leave them incomplete.

Your final score would be:

90% + 90% + 90% + 25% + 25%

5 = 64%

17



Collaboration and Academic Integrity

Collaboration Policy:

e Collaboration is allowed on homework problems, but solutions

must be written independently.
e Writing should not be done in parallel.

e You must list all collaborators separately for each problem.
Use of External Results:

e Unless otherwise stated, referencing non-standard theorems
and proofs not given in class or previous problems is not

allowed.

e All solutions must be proven from first principles.

18



Course Assistants

Pratyush Avi Majid Daliri Giancarlo Pereira

pratyushavi@nyu.edu daliri.majid@nyu.edu giancarlo.pereira@nyu.edu

TA Office Hours: Wednesdays, Thursdays 3:00pm—4:30pm, 8th Floor
Common area, 370 Jay Street

Problem-Solving Session: Tuesdays 12:30pm, Room 826, 370 Jay
Street

19



Questions?



This Class

Goal: Demonstrate how even the simplest tools from probability
can lead to a powerful algorithmic results.

Lecture applications:

e Estimating set size from samples.

e Finding frequent items with small space.
Problem set applications:

e Group testing for diseases (like bird flu, COVID-19, etc.)

20



Probability Review

Let X be a random variable taking value in some set S. l.e. for a
dice, S = {1,...,6}. For a continuous r.v., we might have S = R.

e Expectation: E[X] =) __sPr[X=5s]-s

For continuous r.v., E[X] = [ _sPr(s)-sds.

seS
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Probability Review

Let X be a random variable taking value in some set S. l.e. for a
dice, S = {1,...,6}. For a continuous r.v., we might have S = R.

e Expectation: E[X] =) __sPr[X=5s]-s

For continuous r.v., E[X] = [ _sPr(s)-sds.

seS

e Variance: Var[X] = E[(X — E[X])?] = E[X?] — E[X]2.

-5 Y

A
LA

For any scalar a, E[aX] = aE[X]. Var[aX] = o Var[X]. 21



Probability Review: Example

Example: Let X be the outcome of rolling a fair die. Compute
E[X] and Var[X].

Expectation:
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Probability Review: Example

Example: Let X be the outcome of rolling a fair die. Compute
E[X] and Var[X].

Expectation:

6

1 1 21
E[X]:ZE'SZ6(1+2+3+4+5+6):€:3'5

s=1
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Probability Review: Example

Example: Let X be the outcome of rolling a fair die. Compute
E[X] and Var[X].

Expectation:
° 1 1 21
EX]=) = .s==-(142+34+44+5+6)=-—"=35
[X] 55:165 6(+++++) 5

Variance: Recall Var[X] = E[X?] — E[X]?

6

1 1 91

E[X?1=) =.-s2=>(1+4+9+16+25+36) = —

[X?] 55_16 s 6( +4+9+16+25+36) = 5
2

Var[X] = 91 (7) _ 91 49 182147 35

2 6 4 12 T 12

22



Probability Review

Let A and B be random events.

¢ Joint Probability: Pr(AN B). Probability that both
events happen.

e Conditional Probability:  Pr(A | B) = Z{222) Probability

A happens conditioned on the event that B happens.

¢ Independence: A and B are independent events if:
Pr(A | B) = Pr(A).

Alternative definition of independence:

Pr(AN B) = Pr(A) - Pr(B).

23



Probability Review

Example: What is the probability that for two independent dice
rolls taking values uniformly in {1,2,3,4,5 6}, the first roll comes
up odd and the second is < 37

24



Probability Review

Example: What is the probability that for two independent dice
rolls taking values uniformly in {1,2,3,4,5 6}, the first roll comes
up odd and the second is < 37

32 1

6 6 2

W[ =
(@)}

Let X and Y be random variables. X and Y are independent if,

for all events s, t, the random events [X = s] and [Y = t] are
independent.

24



The Most Powerful Theorem in All of Probability?

Linearity of expectation:

E[X + Y] = E[X] + E[Y]

When is this true?

25



The Most Powerful Theorem in All of Probability?

Linearity of expectation:

E[X + Y] = E[X] + E[Y]

When is this true?

Proof: Let X € Sand Y € T. Then,
EX+Y]=) > (s+1t)-PriX=5sY =1

seSteT

=Y ) s PriX=s5Y=t]+> ) t-PrX=5sY=t
seESteT seSteT

=> s Y PriX=sY=t+) t- > PrlX=5Y =1
seS teT teT seS

= E[X] + E[Y] o



Related Equations

Always, sometimes, or never?

For random variables X, Y

o E[XY] =E[X]-E[Y].

Let Cov(X, Y) = E[(X — E[X])- (Y — E[Y])].

26



Related Equations

Always, sometimes, or never?

For random variables X, Y

o E[XY] =E[X]-E[Y].

Let Cov(X,Y) =E[(X —E[X])- (Y —E[Y])].
Then, Cov(X, Y) = 0 is equivalent to E[XY] = E[X] - E[Y].

e Var[X + Y] = Var[X] + Var[Y].

Var[X + Y] =E [(X + Y —E[X + Y])?]
=E [(X — E[X])? + (Y — E[Y])?+2- (X —E[X]) - (Y — E[Y])]
= Var[X] + Var[Y] + 2- E[(X — E[X]) - (Y — E[Y])]
= Var[X] + Var[Y] + 2 - Cov(X, Y).
26



First Application

You run a web company that is considering contracting with a
vendor that provides CAPTCHAs for logins.

Select all images with
cars
Click verify once there are none left

27
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Claim to have a database of n = 1,000,000 unique CAPTCHAs.
A random one will be shown on each API call to their service.

They give you access to a test APl so you can try it out.

27



First Application

You run a web company that is considering contracting with a
vendor that provides CAPTCHAs for logins.

Select all images with

Claim to have a database of n = 1,000,000 unique CAPTCHAs.
A random one will be shown on each API call to their service.
They give you access to a test APl so you can try it out.
Question: Roughly how many queries to the API, m, would you
need to independently verify the claim that there are ~ 1 million

unique puzzles? 57



First Application

First attempt: Count how many unique CAPTCHAs you see, until
you find 1,000, 000 or close to it. Declare that you are satisfied.

As a function of n, roughly how many API queries m do you need?
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First Application

First attempt: Count how many unique CAPTCHAs you see, until
you find 1,000, 000 or close to it. Declare that you are satisfied.

As a function of n, roughly how many API queries m do you need?

e At least Q(n) queries

e By coupon collector (2 lectures from now) m = O(nlog(n))
suffices to see each unique CAPTCHA.

e Today: O(+/n) queries suffice! Randomized verification.

28



A Different Approach

Clever alternative: Count how many duplicate CAPTCHAs you
see.

ol | g | ol | Y Gl
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A Different Approach

Clever alternative: Count how many duplicate CAPTCHAs you

See.

ol | g | ol | Y Gl

Key Idea: If the the database has many unique CAPTCHAs, you
should see very few duplicates. If there are few unique
CAPTCHAs, you should see many duplicates.

If you see the same CAPTCHA on query i and j, that's one
duplicate. If you see the same CAPTCHA on queries /, j, and k,
that's three duplicates: (i,j), (i, k), (J, k).
29



Formalizing the Problem

Question: How many duplicates do we expect to see if | have n
unique CAPTCHASs?
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Formalizing the Problem

Question: How many duplicates do we expect to see if | have n
unique CAPTCHASs?

Let D;; = 1 if queries i,/ return the same CAPTCHA, and 0
otherwise. This is called an indicator random variable.

D;jj = 1[CAPTCHA i equals CAPTCHA j]

Number of duplicates D is :

What is E[D]?

30



Formalizing the Problem

Question: How many duplicates do we expect to see? Formally,
what is E[D]?

E[D]=E| Y Dy|= Y E[Dj
ije{1,...m} ije{l,...,m}
1<J 1<J

n = number of CAPTCHAS in database, m = number of test queries.
D; j = indicator for event CAPTCHA i/ and j collide. b
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what is E[D]?

1
= ) PrCAPTCHA i=CAPTCHAjl= > -

i<j i<j

n = number of CAPTCHAS in database, m = number of test queries.
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Formalizing the Problem

Question: How many duplicates do we expect to see? Formally,
what is E[D]?

1
= ) PrCAPTCHA i=CAPTCHAjl= > -

i<j i<j

-(5) 3- 2

n = number of CAPTCHAS in database, m = number of test queries.
D; j = indicator for event CAPTCHA i/ and j collide. =



Some Hard Numbers

Suppose you take m = 1000 queries and see 10 duplicates. How
does this compare to the expectation if the database actually has
n = 1,000,000 unique CAPTCHASs?
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Some Hard Numbers

Suppose you take m = 1000 queries and see 10 duplicates. How
does this compare to the expectation if the database actually has
n = 1,000,000 unique CAPTCHASs?

E[D] m(m—1) 1000 -999

2n  2-1,000,000
999,000
~ 2,000,000 05
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Some Hard Numbers

Suppose you take m = 1000 queries and see 10 duplicates. How
does this compare to the expectation if the database actually has
n = 1,000,000 unique CAPTCHASs?

m(m—1) 1000 - 999

E[D] = =
D] 2n 2 - 1,000,000
999,000
~ 2,000,000 05

Something seems wrong... this random variable D came up much
larger than it's expectation.

Can we say something formally?

n = number of CAPTCHAS in database, m = number of test queries. 32



Concentration Inequality

One of the most important tools in analyzing randomized
algorithms. Tell us how likely it is that a random variable X
deviates a certain amount from its expectation E[X].
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Concentration Inequality

One of the most important tools in analyzing randomized
algorithms. Tell us how likely it is that a random variable X
deviates a certain amount from its expectation E[X]. We will learn
three fundamental concentration inequalities:

1. Markov’s Inequality.
e Applies to non-negative random variables.

2. Chebyshev's Inequality.

e Applies to random variables with bounded variance.

3. Hoeffding/Bernstein/Chernoff bounds.

e Apply to sums of independent random variables.

33



Markov’s Inequality

Theorem (Markov’s Inequality): For any random variable X
which only takes non-negative values, and any positive t,

PriX > t] < [ ]
Equivalently, for any o > 0,

PHX > - E[X]] < é

Proof:

34
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Markov’s Inequality

Theorem (Markov’s Inequality): For any random variable X
which only takes non-negative values, and any positive t,

PriX > t] < [ ]
Equivalently, for any o > 0,
PrX > a-E[X]] < ~.
!

Proof:

>E[X - 1x>¢] (since X >0)
> E[t-1x>¢ (since X >t when indicator is 1)

=t-Pr[X >t 9



Application to CAPTCHA Problem

Suppose you take m = 1000 queries and see 10 duplicates. How
does this compare to the expectation if the database actually has
n = 1,000,000 unique CAPTCHASs?

(m

1
E[D] = ’"zn) = .4995.
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Application to CAPTCHA Problem

Suppose you take m = 1000 queries and see 10 duplicates. How
does this compare to the expectation if the database actually has
n = 1,000,000 unique CAPTCHASs?

(m

1
E[D] = ’"zn) = .4995.

By Markov’s:

E[D
Pr[D > 10] < 1[0] < .05 if n actually equals 1 million.

We can be pretty sure we're being scammed...

n = number of CAPTCHAS in database, m = number of test queries.
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General Bound

Alternative view: If E[D] = w then a natural estimator for

. m(m — 1)

h=—".

2D

36



General Bound

Alternative view: If E[D] = w then a natural estimator for

. m(m — 1)

h=—".

2D

With a little more work it is possible to show the following:

Claim: If m = O (i) then with probability 9/10,
(1—€)n<h< (14 ¢€)n. Thisis a two-sided multiplicative error
guarantee. You will prove this on homework.
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General Bound

Alternative view: If E[D] = w then a natural estimator for

. m(m — 1)

h=—".

2D

With a little more work it is possible to show the following:

Claim: If m = O (i) then with probability 9/10,
(1—€)n<h< (14 ¢€)n. Thisis a two-sided multiplicative error
guarantee. You will prove this on homework.

This is a lot better than our original method that required
O(n) queries!

36



Mark and Recapture

Fun facts:

e Known as the “mark-and-recapture” method in ecology.
e Can also be used by webcrawlers to estimate the size of the
internet, a social network, etc.

This is also closely related to the birthday paradox.

37



First Set of Tools

Linearity of Expectation + Markov’s Inequality

Primitive but powerful toolkit, which can be applied to a wide
variety of applications!

38



The Frequent Items Problem

k-Frequent ltems (Heavy-Hitters) Problem: Consider a stream of n
items xi, ..., X, with duplicates. These items take u possible values.
Return any item at appears at least 7 times.
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The Frequent Items Problem

k-Frequent ltems (Heavy-Hitters) Problem: Consider a stream of n
items xi, ..., X, with duplicates. These items take u possible values.
Return any item at appears at least 7 times.

X1, X2, X3, X4,X5, X6, .-

3,8,10,4,3,2...
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The Frequent Items Problem

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n
items xi, ..., X, with duplicates. These items take u possible values.
Return any item at appears at least 7 times.

X1, X2, X3, X4,X5, X6, .-
3.8,10,4,3,2. ..

e Finding top/viral items (i.e., products on Amazon, videos watched
on Youtube, Google searches, etc.)

e Finding very frequent IP addresses sending requests (to detect DoS
attacks/network anomalies).

e ‘lceberg queries' for all items in a database with frequency above
some threshold.

Want very fast detection, without having to scan through database/logs.
l.e., want to maintain a running list of frequent items that appear in a
stream of data items. 39



The Frequent Items Problem

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n
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Return any item that appears at least  times.
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k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n
items xi, ..., X, with duplicates. These items take u possible values.
Return any item that appears at least  times.

Let v; be the number of times item / appears in the stream (frequency of
item /)
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The Frequent Items Problem

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n
items xi, ..., X, with duplicates. These items take u possible values.
Return any item that appears at least  times.

Let v; be the number of times item / appears in the stream (frequency of
item /)

12 3 3 4 10 3
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The Frequent Items Problem

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n
items xi, ..., X, with duplicates. These items take u possible values.
Return any item that appears at least  times.

Let v; be the number of times item / appears in the stream (frequency of

item /)
A v, A v, vy v v, Vg A
5 12 3 3 4 5 5 10 3

e Trivial with O(u) space — store the count for each item and return
the one that appears > n/k times.

40



Frequent Subset Mining

Example where linear dependence on v is too large: Find common
subsets within a collection of sets. Each subset is an “item”.

Cart 1 Cart 2 Cart 3
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Frequent Subset Mining

Example where linear dependence on v is too large: Find common
subsets within a collection of sets. Each subset is an “item”.

Cart 1 Cart 2 Cart 3

= %) \% %)

NN AN

e For product recommendations, the number of pairs of products
might grow quadratically with the number of products. Amazon has
12 million products. (12 million) x 4 bytes = 48 megabytes .

(12 million)? x 4 bytes = 576 terabytes to maintain counts.
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Frequent Subset Mining

Example where linear dependence on v is too large: Find common
subsets within a collection of sets. Each subset is an “item”.

Cart 1 Cart 2 Cart 3

AV

e For product recommendations, the number of pairs of products
might grow quadratically with the number of products. Amazon has
12 million products. (12 million) x 4 bytes = 48 megabytes .

(12 million)? x 4 bytes = 576 terabytes to maintain counts.

e For social media recommendations, we might have a set of followers
for each user and want to count frequent subsets of who they

follow. Even higher complexity. m



Approximate Frequent Elements

Issue: Can prove that no algorithm using o(u) space can output
just the items with frequency > n/k. We will only be able to solve
the problem approximately.
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Approximate Frequent Elements

Issue: Can prove that no algorithm using o(u) space can output

just the items with frequency > n/k. We will only be able to solve
the problem approximately.
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Approximate Frequent Elements

Issue: Can prove that no algorithm using o(u) space can output

just the items with frequency > n/k. We will only be able to solve
the problem approximately.

(e, k)-Frequent Items Problem: Consider a stream of n items
X1, ...,Xp. Return a set of items F, including all items that appear
> ¢ times and only items that appear > (1 —¢) - £ times.

The deterministic Misra-Gries algorithm solves this problem

using O(k/e) space. We will see a randomized algorithm that
matches this, and is more flexible in many settings.
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Frequent Elements with Count-Min Sketch

Today: Count-Min Sketch — a random hashing based method for

the frequent elements problem.
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Today: Count-Min Sketch — a random hashing based method for

the frequent elements problem.

Due to a 2005 paper by Graham Cormode and Muthu
Muthukrishnan.

Solves the slightly different point query problem. Given any value
v, let f(v) =37 ; 1[x; = v] be the number of times v appears in
the stream.
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v, let f(v) =37 ; 1[x; = v] be the number of times v appears in
the stream.

Goal: Return estimate f(v) such that f(v) < f(v) < f(v) +e-
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Frequent Elements with Count-Min Sketch

Today: Count-Min Sketch — a random hashing based method for

the frequent elements problem.

Due to a 2005 paper by Graham Cormode and Muthu
Muthukrishnan.

Solves the slightly different point query problem. Given any value
v, let f(v) =37 ; 1[x; = v] be the number of times v appears in
the stream.

Goal: Return estimate f(v) such that f(v) < f(v) < f(v) +e-
with high probability.

I3

Solving Frequent items: Just return all items for which f(v) > Z
Assume f(v) < (1 —¢)- 2. Then f(v) < f(v)+e- 2 < 2.
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Random Hash Function

Let h be a random function from U ={1,...,u} — {1,..., m}.
This means that h is constructed by an algorithm using a seed of
random numbers, but then the function is fixed. Given input

x € U, it always returns the same output, h(x).
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e h(x) and h(y) are independent r.v.’s for all x,y € U.
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Random Hash Function

Let h be a random function from U ={1,...,u} — {1,..., m}.
This means that h is constructed by an algorithm using a seed of
random numbers, but then the function is fixed. Given input

x € U, it always returns the same output, h(x).

Definition: Uniformly Random Hash Function. A random
function h: U — {1,..., m} is called uniformly random if:

o Prih(x) =il =L forall xetd, ie{1,...,m}.
e h(x) and h(y) are independent r.v.’s for all x,y € U.

e Which implies that Pr[h(x) = h(y)] = +

m

U = universe of possible keys, m = number of values hashed to. 24



Random Hash Function

Caveat: It is not possible to efficiently implement uniform random
hash functions! (Even if we have access to truly random numbers)
But:
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But:

e In practice “random looking” functions suffice.

e We will discuss weaker, efficiently implementable hash
functions (in particular, universal hash functions) next week.

e Our analysis will work with these weaker hash functions.
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Random Hash Function

Caveat: It is not possible to efficiently implement uniform random
hash functions! (Even if we have access to truly random numbers)
But:

e In practice “random looking” functions suffice.

e We will discuss weaker, efficiently implementable hash
functions (in particular, universal hash functions) next week.

e Our analysis will work with these weaker hash functions.

But, we will make our lives easier by assuming we have access to
a uniformly random hash function. This is an assumption we will
use in future lectures as well. The assumption is often made in

reseach papers even.

45



Count-Min Sketch

Xy X, Xz X4 e Xq
random hash function h
m length array A
Count-Min Update:
e Choose random hash function h mapping to {1,..., m}.

e Fori=1,...,n
e Given item x;, set A[h(x;)] = A[h(x;)] + 1

h: random hash function. m: size of Count-Min sketch array.
46



Count-Min Sketch

We want to estimate the frequency of item v,

f(v) =25 1 = v].
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Count-Min Sketch

We want to estimate the frequency of item v,

f(v) =25 1 = v].

To do this using our small space “sketch” A, return

F(v) = Alh(v)].

m length array A | 4 2 1 6 1 3 - 2
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We want to estimate the frequency of item v,
F(v) =220 1xi = v].

To do this using our small space “sketch” A, return

F(v) = Alh(v)].

m length array A | 4 2 1 6 1 3 - 2

Claim 1: We always have Alh(v)] > f(v). Why?

F(v) = Alh(v)] = Y 1[h(x)) = h(v)] - f(x;)

i=1

47



Count-Min Sketch Accuracy

Alh(v)] = f(v) + Y 1[h(x;) = h(v)] - f(x;)
iX;#v

error in frequency estimate

Expected Error:

E| > 1[h(x) =h(v)]-f(x)| = Y_ Pr[h(x;) =h(v)] - f(x;) <

i:xi#v ixi#v

33
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Count-Min Sketch Accuracy

Alh(v)] = f(v) + Y 1[h(x;) = h(v)] - f(x;)
i:X;#v

error in frequency estimate

Expected Error:

E | > 1[h(x;) =h(v)]- f(x)| <
i:xj#v

33

What is a bound on probability that the error is > %?
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Count-Min Sketch Accuracy

Alh(v)] = f(v) + Y 1[h(x;) = h(v)] - f(x;)
i:X;#v

error in frequency estimate

Expected Error:

E | > 1[h(x;) =h(v)]- f(x)| <
i:xj#v

33

2n7
m -

What is a bound on probability that the error is >
Markov’s inequality: Pr [Ey;éxzh(y):h(x) fly) > 2—,:7’] <1/2

f(v): frequency of v in the stream. h: random hash function. m: size
of Count-Min sketch array. 49



Count-Min Sketch Accuracy
m length array A | 4 2 1 6 . 1 3 -Z

Claim: For any v, with probability at least 1/2,

F(v) < Alh(V)] < F(v) + 277'7’

To solve the point query problem with error £n, set m = k/e

How can we improve the success probability?

f(v): frequency of v in the stream. h: random hash function. m: size
of Count-Min sketch array.

50



Count-Min Sketch Accuracy

t random hash functions
hy, hy,..., hy

A, 1 0 0 0 0 0 Q 0 0 0

tlengthmarrays A, | 0 | 0 fJo |0 0o 0| 0|1 0 o0

f(v): frequency of v in the stream. hy, ..., h;: multiple random hash
functions. m: size of t Count-Min sketch arrays. 51



Count-Min Sketch Accuracy

X; Xo X3 Xg U o8

t random hash functions
hy, hy,..., hy

A, 2 0 ¢ 0 Q 0 0 0 0 0

tlengthmarrays A, | 0 | 0|1 |0 0 M | 0|1 0 o0

f(v): frequency of v in the stream. hy, ..., h;: multiple random hash

functions. m: size of t Count-Min sketch arrays. 52



Count-Min Sketch Accuracy

t random hash functions
hy, hy,..., hy

A, 2 5 1 0 6 12. 1 3 4

tlength marrays A, | 1 | 6 | 1 [10 78.4 1|3 | 5

A..l 52 6 | 3 | 12 33.3 2

f(v): frequency of v in the stream. hy, ..., h;: multiple random hash
functions. m: size of t Count-Min sketch arrays. 53



Count-Min Sketch Accuracy

Xy Xy X3 Xg I

A,

tlength m arrays Az \1 6 1 10 78 . 4 11| 3 5

A, 1|15 6 3 112 33 . 3 2

Estimate f(v) with 7(v) = min;cfe Ailhi(v)]. (Count-Min sketch)

Why min instead of mean or median?

54



Count-Min Sketch Accuracy

Xy Xp X3 X4 e X

A..llsz‘s‘a‘n‘sa.a‘zl

Estimate f(v) with f(v) = min;erg Ai[hi(v)].

e Forevery vand jand m= % we know that with prob. > 1/2:
f(v) < Ailhi(V)] < F(v) + .

o Pr{f(v) <F(v) < f(V)+ 91 >1- 5

e To get a good estimate with probability > 1 — 4,
set t = log(1/0) 55



Count-Min Sketch

Upshot: Count-Min sketch lets us estimate the frequency of each

item in a stream up to error £n with probability > 1 —¢ in
O (log(1/5) - £) space.

Caveat: This is a for each v guarantee. We actually want a for all
v guarantee: i.e. the bound should hold simultaneously for all v.
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Use a Union Bound

Lemma (Union Bound)
For any random events Ay, ..., Ax:

Pr[A1 UAU...U Ak] < Pr[Al] T PF[AQ] AF oo AF Pr[Ak].

Here Pr[A1 U Ay U ... U Ak] means Pr[A; “or” Ay... “or” Ag]

Proof by picture. >



Use a Union Bound

The algorithm fails if |f(v) — f(v)| > znforany ve {vi,...,v}.
By union bound:

Pr[(fail for v1) or (fail for v2) or... or(fail for v,)]
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Use a Union Bound

The algorithm fails if |f(v) — f(v)| > znforany ve {vi,...,v}.
By union bound:

Pr[(fail for v1) or (fail for v2) or... or(fail for v,)]

< Pr|(fail for v1)] + Pr[(fail for v»)] ...+ Pr[(fail for v,)]
<u-o
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Final Result

Set § = ﬁ. With probability 9/10, Count-Min sketch lets us
estimate the frequency of all items in a stream up to error £n.

e Accurate enough to solve the (e, k)-Frequent elements
problem — just return all v with estimated frequency > n/k.
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Identifying Frequent Items

How do we identify the frequent items without having to look up
the estimated frequency for all elements in the stream?

One approach:

e When a new item comes in at step /, check if its estimated
frequency is > i/k and store it if so.

e At step / remove any stored items whose estimated frequency
drops below i/k.

e Store at most O(k) items at once and have all items with
estimated frequency > n/k stored at the end of the stream.
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